N
Check for
Updates

Split Decisions: Explicit Contexts
for Substructural Languages

Daniel Zackon

McGill University

Montreal, Canada
daniel.zackon@mail.mcgill.ca

Alberto Momigliano
University of Milan
Milan, Italy
momigliano@di.unimi.it

Abstract

A central challenge in mechanizing the meta-theory of sub-
structural languages is modeling contexts. Although various
ad hoc approaches to this problem exist, we lack a set of good
practices and a simple infrastructure that can be leveraged
for mechanizing a wide range of substructural systems.

In this work, we describe Contexts as Resource Vectors
(CARVe), a general syntactic infrastructure for managing
substructural contexts, where elements are annotated with
tags from a resource algebra denoting their availability. As-
sumptions persist as contexts are manipulated since we
model resource consumption by changing their tags. We
may thus define relations between substructural contexts via
simultaneous substitutions without the need to split them.
Moreover, we establish a series of algebraic properties about
context operations that are typically required to carry out
proofs in practice. CARVe is implemented in the proof assis-
tant Beluga.

To illustrate best practices for using our infrastructure,
we give a detailed reformulation of the linear sequent calcu-
lus and bidirectional linear A-calculus in terms of CARVe’s
context operations and prove their equivalence using the
aforementioned algebraic properties. In addition, we apply
CARVe to mechanize a diverse set of systems, from the affine
A-calculus to the session-typed process calculus CP, giving us
confidence that CARVe is sufficiently general to mechanize
a broad range of substructural systems.

CCS Concepts: » Software and its engineering — Formal
software verification; « Theory of computation — Logic
and verification; Proof theory.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

CPP °25, January 20-21, 2025, Denver, CO, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1347-7/25/01
https://doi.org/10.1145/3703595.3705888

257

Chuta Sano
McGill University
Montreal, Canada

chuta.sano@mail.mcgill.ca

Brigitte Pientka

McGill University

Montreal, Canada
brigitte.pientka@mcgill.ca

Keywords: mechanized meta-theory, substructural type sys-
tems, substructural logics, linear logic, verification

ACM Reference Format:

Daniel Zackon, Chuta Sano, Alberto Momigliano, and Brigitte
Pientka. 2025. Split Decisions: Explicit Contexts for Substructural
Languages. In Proceedings of the 14th ACM SIGPLAN International
Conference on Certified Programs and Proofs (CPP °25), January 20—
21, 2025, Denver, CO, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3703595.3705888

1 Introduction

Over the past decades, substructural type systems and logics
have been used to reason about resources in a wide range
of programming language applications, including quantum
computing [51], concurrent programming [5, 54], and mem-
ory management, as in Rust [36] and linear Haskell [4]. The
need for mechanized meta-theory to rigorously ensure the
trustworthiness of such systems is significant, as even seem-
ingly minor extensions can compromise basic safety proper-
ties. Still, mechanization is in general a major undertaking,
and substructurality demands further careful attention. In-
deed, mechanizing linearity is one of the challenges in the
recent Concurrent Calculi Formalisation Benchmark [8].

Substructural systems usually control and sometimes elim-
inate contraction (which permits a formula to be used more
than once) and weakening (which permits a formula to be
left unused).! Consequently, determining how to track and
allocate formulas, seen as resources, is a key challenge when
formalizing and proving meta-theoretical properties of these
substructural languages within a proof assistant.

Consider, for illustration, the following implicational frag-
ment of an intuitionistic linear sequent calculus.

AM+HA Ay, A+B

ara AA, B
ANA+B (—oR) AM+FA AZ,BI—C(D
A+A —oB A, Ay, A - B+C

By and large, these systems admit exchange, and so we restrict our attention

to substructurality in the sense of controlling contraction and weakening.

https://orcid.org/0009-0008-6153-2955
https://orcid.org/0000-0002-8179-2307
https://orcid.org/0000-0003-0942-4777
https://orcid.org/0000-0002-2549-4276
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3703595.3705888
https://doi.org/10.1145/3703595.3705888
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3703595.3705888&domain=pdf&date_stamp=2025-01-10

CPP ’25, January 20-21, 2025, Denver, CO, USA

Reading the (—oL) rule bottom-up, we check that an as-
sumption A — B appears in the conclusion’s context and
consume it; then, we split up all other assumptions into two
pairwise disjoint subcontexts for the premises, and add to
one a new assumption B. From a mechanization standpoint,
it is usually sensible to make this splitting procedure explicit
with a context join operation A; >« A, = A that is both
commutative and associative. Yet splitting a context is funda-
mentally a non-deterministic process. The other rules above
present related considerations.

These context operations take on additional complexi-
ties in richer systems that involve not only linear but also
affine or even ordinary intuitionistic assumptions. Note in
particular the (hyp) rule, which enforces the linear usage
of propositions; with the addition of intuitionistic assump-
tions, encoding this rule requires checking that all linear
assumptions have been used in the context apart from A.

The prevailing approach to encoding substructural sys-
tems is to model contexts explicitly, typically as lists or
dictionaries, with a naive non-deterministic splitting op-
eration resembling on-paper developments (see for exam-
ple [33, 52, 58]). Often, separate contexts are used to track
assumptions governed by different structural rules. While
this solution facilitates encodings that more faithfully mimic
their on-paper counterparts, they are inconvenient in re-
alistic implementations and incompatible with de Bruijn
encodings and explicit simultaneous substitutions [50]. Al-
ternative techniques have been developed with the aim of
eliminating or simplifying some of this overhead, including
leftover typing [1] and tracking variable usage through proof
terms [16, 47]. Though elegant, these solutions generally de-
mand substantial modifications to the on-paper formulation
of a calculus. Moreover, the first approach fits algorithmic
rather than declarative proof systems, while the latter seems
challenging to generalize to richer substructural logics such
as adjoint logic [31, 43].

In this paper, we follow an alternative strategy first out-
lined by Schack-Nielsen and Schiirmann [48, 50]: we model
substructural typing contexts explicitly, parametric to some
algebra for specifying resource usage. As a result, users may
obtain contexts for particular substructural systems such
as linear or affine type systems “for free” by specifying a
suitable algebra. While variables are retained in contexts,
their resource annotations may change. Thus the underlying
context remains intact. Ignoring the usages, the rules of a
given substructural system closely resemble their intuition-
istic counterparts. This approach has two main advantages:
firstly, it is in principle compatible with a range of encod-
ings for binders, including de Bruijn, locally nameless, and
higher-order abstract syntax (HOAS); secondly, it lends itself
naturally to representing simultaneous substitutions without
splitting them.

258

Daniel Zackon, Chuta Sano, Alberto Momigliano, and Brigitte Pientka

Using this framework, we develop Contexts as Resource
Vectors (CARVe), a low-level syntactic infrastructure for
implementing substructural systems and reasoning about
their meta-theory. CARVe supports a small set of core con-
text operations defined as relations: merging (or splitting)
contexts, updating a given assumption in the context (ei-
ther its tag or the actual item stored), and checking whether
a context’s available resources have been consumed. From
these primitive operations we can define several other con-
text operations, including look-up and the permutation of
elements. We further implement simultaneous substitutions
as context relations. We establish a series of algebraic and
well-formedness properties of context operations that are re-
quired to carry out proofs in practice. CARVe is implemented
in the proof assistant Beluga [40, 41], which enables us to
explore multiple binding approaches—including de Bruijn
encodings and HOAS—and so to better understand CARVe’s
generality. Still, CARVe is not restricted to Beluga can in
principle be realized any proof assistant.

Our approach is related to that of Wood and Atkey [56,
57], whereby variables are annotated with values from a
skew semiring indicating their usage by terms. While they
take a category-theoretic perspective and use combinators
to manage resource vectors and syntax traversals, we define
context operations directly on the syntax of contexts—as
low-level relations on lists—together with meta-theoretic
properties. This makes our framework intuitive to use and
to apply to a wide range of systems.

To illustrate best practices for using our infrastructure,
we give a detailed reformulation of the linear sequent calcu-
lus and bidirectional linear A-calculus in terms of CARVe’s
context operations and prove their equivalence using the
aforementioned algebraic properties. In addition, we apply
CARVe to mechanize a diverse set of systems, giving us con-
fidence that CARVe is sufficiently general to mechanize a
broad range of substructural systems together with meta-
theoretic proofs. Beyond the cited equivalence proof, we
have mechanized cut-elimination for the linear sequent cal-
culus, type preservation for the affine and linear A-calculus
with both a substitution and environment-based operational
semantics, type preservation for the propositional fragment
of the session-typed process calculus CP [54], and a trans-
lation between the encoding of CP using CARVe and an
encoding using explicit linearity predicates to track resource
usage [47].

An artifact [59] containing the full formalization may be
downloaded directly from

https://zenodo.org/records/13777001.

Further information about the artifact, including a paper-to-
artifact correspondence guide and instructions for installa-
tion and execution, may be found in the README . md file.

https://zenodo.org/records/13777001

Split Decisions: Explicit Contexts for Substructural Languages

2 Contexts as Resource Vectors: An
Infrastructure

The representation of contexts is central when implementing
and reasoning about systems that support variable binding
mechanisms such as programming languages, type systems,
and logics. The prevalent and natural choice for these sys-
tems is to model contexts as lists of assumptions. We follow
in this tradition. In CARVe, context entries will be typed
variables x : A annotated with elements « of some algebra,
to be read as multiplicities. (For presentation purposes, we de-
tail the case where we have names, but the approach works
seamlessly in a nameless setting.) Informally, multiplicities
specify the availability of a resource, and the associated al-
gebraic structure sets out how they may be subdivided and
composed.

Our definition of contexts does not assume well-formed-
ness, in the sense of variable names being pairwise distinct.
While this is needed when proving properties like type
uniqueness, for generality and concision we choose to keep
the infrastructure agnostic to whether and how well-form-
edness is enforced. It is, however, an invariant that CARVe’s
primitive context operations will preserve.

In the remainder of this section, we will outline these oper-
ations and the properties they possess, organized into three
key themes: resource allocation, exhaustedness, and context
search and manipulation.

2.1 Resource Allocation

One difficulty in mechanizing multi-premise multiplicative
rules like (—oL) in section 1 is determining how to split con-
texts to allocate resources. The central idea behind our ap-
proach is to keep contexts intact as they are joined and split,
with only their multiplicities differing. In other words, in-
stead of merging two disjoint contexts, we “weave together”
compatible multiplicities at each position of a single context.
We define an explicit non-deterministic split—or, viewed
differently, deterministic merge—operation >, on contexts,
which is parametrized by a binary operation o over some
algebraic structure.

The operation o may be partial, and hence so may »<,. Fol-
lowing Dockins et al. [18], we will present these operations
as ternary relations between multiplicities and contexts, re-
spectively. Every proof assistant supports this presentation,
which is simpler to accommodate compared to a functional
one, where partiality tends to take its toll.

Context merge is inductively defined by the rules:

Ay, Ay = A a0 =a
(A, x ® Ay e, (Ag,x 2 A)=Ax:%A

S, - =

Different choices of resource algebras encode different
substructural properties. We will, for the present, focus our
attention on the monoid

L =({0,1},,0)

259

CPP ’25, January 20-21, 2025, Denver, CO, USA

that characterizes allocation for linear or affine contexts,
where e is defined by the following multiplication table:

e 0 1
0|10 1
11 -

The multiplicity 1 denotes a variable available exactly once.
A variable of multiplicity 0 is irrelevant in the current branch
of a derivation: it was either never available, has been pre-
viously consumed, or is available linearly elsewhere. Note
that the operation e is partial, as 1 e 1 is left undefined (-).
As is well-known, L satisfies several desirable algebraic
properties. Notably, it is
e Functional: e f=yanda e f =y imply y =y’;
e Cancellative: x® f =y and o’ @ f =y imply a = ’;
e Commutative: o ® f = y implies f @ @ = y; and
e Zero-sum-free: ¢ ® f = 0 implies a = f = 0.
The latter property prevents used resources from arbitrarily
transforming into linear ones.
In addition to its modularity, this construction has the
advantage of allowing the underlying algebraic structure to
naturally impose itself on »<,. Specifically:

Proposition 2.1. Let A = x; % Ay,.. %n A, be a

context and M = (M, o, i) a monoid. Then
AM = ({x1 P AL oxn P An | Bu . Pa € MY, <o, iA)

is a monoid. Moreover, if M is commutative, then AM is
commutative, and so forth.

-,xn

Here aA denotes the result of setting all multiplicities in a
context A to a.
Context merge also preserves well-formedness:

Proposition 2.2. Suppose Ay = A, = A. Then the following
are equivalent: (1) Ay is well-formed, (2) A, is well-formed,
and (3) A is well-formed.

2.2 Exhaustedness

In substructural logics, it is common for a rule to demand an
empty context, such as the right rule for the multiplicative
unit of the linear sequent calculus. In our tag-based approach,
where context elements persist, this is enforced by requiring
that the context contain only “harmless” assumptions, in
the sense that they are subject to weakening. We call such
a context exhausted, denoted by exh(A). Exhaustedness can
also be used to enforce that a context is singleton, as in the
case of the axiom rule of the linear sequent calculus (see
section 3).

Checking that a context is exhausted entails checking the
harmlessness of its elements. This check will depend on the
chosen algebra or the system being encoded. For systems
using L as a resource algebra, only used assumptions of mul-
tiplicity 0 are regarded as harmless. Unrestricted assumptions
will be considered harmless in systems that support them
(see section 5).

CPP ’25, January 20-21, 2025, Denver, CO, USA

When only the algebraic unit is deemed harmless, as in
the linear case, an exhausted context corresponds to the unit
element of the context monoid from Proposition 2.1.

2.3 Context Search and Manipulation

Though extending a context with a new assumption or deter-
mining its top-most element are simple tasks, a more careful
approach is needed for arbitrary context search and manip-
ulation. In line with our principle of preserving contexts
as they are split, multiplicity tags enable us to effectively
model changes in resource availability by simply updating a
variable’s multiplicity.

In the linear or affine case, this means modifying a vari-
able’s tag from 1 to 0 or vice versa. Some applications (e.g.,
[54]) also require changing the types of variables as computa-
tion occurs. Accordingly, we choose to take a general version
of context updating as a primitive in its own right, which
can be used to implement updating the type and multiplicity
of a variable as a special case. We write

A[x:“AHny:ﬁB]:A’

to mean that x :* A appears at the n-th position from the
head of A, and replacing its occurrence in A with y :# B
results in the context A’. It is defined in the expected manner
by recursively traversing the context:

(Ax:“A)[x A a1 Y # B] =Ay # B

Alx:“ A,y P Bl =N
AzYO)[x A,y P Bl=N,z¥C
Y

As with merge, we define updating relationally. For sim-
plicity of notation, and as updating is functional and look-up
unique by Proposition 2.3, we will at times abuse notation
and use A[x :* A+, y :# B] to represent the resulting con-
text (and thus, implicitly, state the existence of x :* A some-
where in A). We also omit the index n where it is inessential.

Conversely, when adopting a nameless approach using,
e.g., de Bruijn indices, all information about names may be
dropped in favor of information about location. Still, we
permit names to be updated in the general definition. This al-
lows us to define variable swapping within a context, denoted
A[x 2 y], crucial in proving the admissibility of exchange
without needing a separate predicate for permuting context
elements:

Alx2yl=A":
Alx:* A,y Bllyf B, x:@ Al = A

for somen # m

(The condition n # m ensures that the y in the second update
is an element of A, rather than the one newly created at n.)

260

Daniel Zackon, Chuta Sano, Alberto Momigliano, and Brigitte Pientka

One may also define context membership properties like
the following via updating:

x:*Ae, A =A[x TA, x:TAl = A
x:*AeA:=Alx:* A, x:* A] = A for some n

Having a single operation in this way significantly reduces
the number of lemmas needed for reasoning about the ma-
nipulation of contexts. Furthermore, context updating has a
range of useful properties that may be exploited in proofs.
If we regard updating as a relation between two contexts,
and the information in the square brackets as labels, then
the set of well-formed contexts (of some fixed length) forms
a labeled transition system satisfying the following.

Proposition 2.3. Context updating satisfies the following.
Functionality: IfA[x :* A,y # Bl = A’ and
Alx:® A,y P Bl = A", then A" = A”';
Reflexivity: If x :* A appears at the n-th position of A, then
Alx *A, x Al =A;
Symmetry: A[x :* A,y # Bl = A" implies
ANy P Brs,x %Al =A;
Transitivity: A[x :* A, y £ Blly # B, z:¥ C] =
Alx :* A,z C;
Confluence:
Alx; @ Ay >y x0 2 Ap][y1 P By o 4o P2 By
Alys $1 By, Yo P2 Byl [x1 M Ay o xp 2 Ay); and
Distributivity over»<,:
Alx @ A,y PrBl e, A[x 2 A, y P2 Bl =
(A1 540 Ag)[x :* Aoy y :P1oP2 B

We also have various look-up properties:

Proposition 2.4. Context look-up satisfies the following.

Uniqueness: If x :* A €, A andy # B €, A, then x =y,
A=B,anda = p;

Preservation under update: If x :* A €, A,

Aly # B —mz:Y Cl =N, andn # m, then
x:*Ae, N;

Preservation under splits: If x :* A €, A and Ay v, Ap = A,
thenx :*t A €, Ay andx :*2 A €, A, for some a1, o such
that a; o as = a; and

Preservation under merge: If x :* A €, Ay and Ay > Ay = A,
then x :“2 A €, Ay and x :* A €, A for some ay, & such
that a; o az = a.

For some of the properties mentioned above, allowing
indices to be arbitrary necessitates additional assumptions
about well-formedness. Updating interacts with well-formed-
ness as expected:

Proposition 2.5. Let A be well-formed and x :“* A €, A.
Then the following properties hold:
Variable uniqueness: Ify :# B €,, A, then x = y if and only if
n=m;and
Preservation under update: If x =y ory ¢ A, then
Alx % A+, y # B] is well-formed for any p, B.

Split Decisions: Explicit Contexts for Substructural Languages

3 CARVein Action

In this section we will present a high-level look at how sys-
tems may be reformulated using CARVe. (We will discuss
their actual mechanizations together with more low-level
details in section 4.) We revisit the linear sequent calculus
introduced in section 1 alongside a bidirectional linear nat-
ural deduction calculus with proof terms, and sketch out a
proof of their equivalence.

3.1 Reformulating with CARVe

Let us use the turnstile I+ to distinguish typing judgments
in the CARVe setting. We will parameterize contexts by the
monoid £ of subsection 2.1; for simplicity of notation, we
will write »< for >, throughout this section.

Consider first the hypothesis rule of the linear sequent
calculus. If A I A is derived therefrom, then A appears as
the type of some linear variable somewhere in A, and “using
it up” results in an exhausted context:

Alx P A x:0Al = A
AlFA

exh(A')

If A v A — B is derived from the —o right rule, then
adding a fresh linear variable to A of type A should give us B.
We follow the principle that, reading derivations bottom-up,
contexts grow with new variables pushed to the top of the
context.

Ax:'ArB
ArA—oB

If A I C is derived from the —o left rule, then (1) x :! A —
B appears somewhere in A for some x; and (2) using x results

in a context that can be split into subcontexts A; and A, such
that (a) A; - Aand (b) Ay, y :! BIr C:

A1><A2:A’ A]ll‘A
Alx'!A—-Br—x:"A—-Bl=N Apy:'BrC
ArC

Reformulating the cut rule is similar.

A Ay=A AF+HA Az,X:lAl-B
A+ B

Next, we formulate a bidirectional linear natural deduction
calculus in CARVe following the same principles.

Are<= A Are= A
Ar(e:A)=A ArecsA

Alx P A x P Al = A’
AFx=>A

exh(A') Ax:'Are=B

ArAx.e = A —oB

Air<Ay=A Ailreg=>A—oB Ajlrey <A
AFeje; = B

261

CPP ’25, January 20-21, 2025, Denver, CO, USA

3.2 Equivalence Theorem

To showcase how CARVe lends itself well to proofs using
simultaneous substitution, we take this approach to prove
the two linear systems’ equivalence. A benefit of this proof
is that it preserves the structure of the derivation between
the two systems.

We define well-typed simultaneous substitutions (judg-
ment A; I o : T'), which map variables to terms, as follows.

EXh(A) A1||-O'Zr A2||—€<:C AIMAZZA
Ak -:- Ak (o,e): (T,x:1 C)

Aro:T ANres=C 0A=0A
At (g,e): (T,x:°0)

As per [50], since the structure of the typing contexts remain
intact as their resources are subdivided, we avoid splitting
the substitution. In the final rule, the premise 0A = 0A’
permits e to use an arbitrary collection of assumptions in A,
regardless of their availability.

We state three properties of this substitution:

Lemma 3.1 (Properties of substitution).

1. Exhaustedness: If A + o : T and exh(T'), then exh(A);

2. Merge: If A+ 0 : T andT =T > T, then Ay - 0 : I}
and Ay v o : T, for some Ay, A, such that A = Ay > A,.

3. Resource consumption: IfA v o : T andT[x ! A —
x " Al =T, thenAy - o : T and A, v e & A for
some Ay, Ag, e such that A = Ay >< A,

The second lemma asserts that substitutions remain stable
under context splits, and the third enables one to “carry over”
a substitution term to an updated context.

We are now prepared to sketch a proof of the two systems’
equivalence. Throughout, we will assign names to derived
judgments for a later comparison with a mechanized proof
of the same in section 4.2.

Theorem 3.2 (Equivalence).

LITwrCandAWwo:T,thenAre < C for somee;

2. IfAve < C, then A\ C;and

3IfA i re= Aand Ay, x L A C,and Ay v Ay = A,
then A\ C.

Proof. The proof of the first statement by structural induction
on the first typing derivation. Let us denote by D, S the
initial assumptions. We consider two representative cases.
First, suppose that the last rule in the typing derivation
was (hyp). Then
a U:T[x:'Cr—x:"C] =T"and &; : exh(T")
by inversion on D
b.S;:Ajko:T"andC; : Ay ke & C, and
My i Ay >« Ay = A for some e, Aj, A,
by Lemma 3.1 (3) using S, U
by Lemma 3.1 (1) using S1, &4
by identity property of >« using M;, &,

c. & :exh(Ay)
d A=A

CPP ’25, January 20-21, 2025, Denver, CO, USA

e Are=C by Cy

The second case we consider is where the last rule in the
typing derivation was (—oL). In this case:

a. U:T[x'A—oB—x:"A—oB]=T,
M T =T, D : Ty Aand D, : T,y :! B C
by inversion on D
.S A ko T, Dy i As - eg & A — B, and
My i Az >< As = A for some eg, A1, Ag
by Lemma 3.1 (3) using U, S
. S5 : Ao, S3: Ay ko:T,and M3 : Ay Ay =
A1, for some A, A; by Lemma 3.1 (2) with Sy, M,
. M3 : Az > A3’1 = A, M4 : A3 >d Al = A3’1 for some
Asq by assoc., comm. of >« using Mz, M3
Dy : A; - e; & Afor some e, by LH. using Dy, S;
f.D3:As11-e(eg:A—-B)=B
by (coe), (—oE) with D1,D,, My
D;:NA3q-e(ez: A—o B) & B by (conv) with Ds
h. 84: A 03,61 €, : I,y ! B by def. using S3, D}, Ms
i. A e & C for some e by LH. using D,, S,

The proofs of the second and third statements are by mu-
tual induction on the first derivation, appealing to the alge-
braic properties of merge. O

4 Implementation and Case Studies

The infrastructure presented in section 2 has been imple-
mented in Beluga [40], a dependently-typed proof environ-
ment based on the logical framework LF, which uses an
underlying A-calculus as a meta-language for representing
and reasoning about deductive systems [29]. In this section
we will present an overview of the implementation and the
case studies encoded. A table summarizing lemma usage in
the mechanizations may be found in subsection 4.3. We refer
the reader to the artifact [59] containing the formalization
for full details.

4.1 Implementing CARVe

Building on Crary’s [15] study of explicit contexts in LF, we
use higher-order representations for syntax and represent
object-level substructural typing contexts as lists. Their type
family—indexed by length—is defined in the standard way.

LF lctx : nat — type =
| nil : lctx zero
| cons : lctx N - obj - tp - mult —» lctx (suc N);

The objects that appear as resources in explicit contexts
(e.g., variables, channel names) are assigned the type obj
: type. When these are simply variables, the type will be
defined with no constructors; instead, assumptions of type
obj will be collected in an LF context ¥ classified by the
schema schema ctx = obj. (In a nameless setting, one may
leave the LF context empty so long as a constructor is defined
for obj.)

262

Daniel Zackon, Chuta Sano, Alberto Momigliano, and Brigitte Pientka

The type tp : type encodes object-level types, and mult :
type multiplicities. In all but one of the case studies in this
section, contexts will be parameterized by the monoid L.

LF e : mult - mult - mult - type =
LF mult : type =
| /00 : « 00O
| O : mult
1 1t | /10 : ¢ 1 0 1
: mult;
| /01 : ¢« 0 1 1;

Since the general definition of exhausted contexts is inde-
pendent of any specific algebraic structure, we define the
allowed “harmless” multiplicities using the type hal:

LF hal : mult - type =
| hal/e : hal O;

Context Operations. Merging, updating, looking up a
variable, and exhaustedness checks are represented in LF by
the following.

LF merge : lctx N - lctx N - lctx N - type =
| mg/n : merge nil nil nil
| mg/c : merge A1 Ay A - o ay ap «
- merge (cons A; X A a1) (cons Ay X A az) (cons A X A a);

LF upd : lctx N - nat - obj - obj - tp - tp - mult - mult
- lctx N > type =
| upd/t : {A:lctx N}
upd (cons A X A a) (suc N) XY AB a f (cons A Y B f)
| upd/n : upd AnXYABapA'
- upd (cons AZCy) nXYABa f (cons A' ZC y);

LF lookup_n : obj - lctx _ — type =

| lookn : upd A _ X _ _ _ _ _ _ - lookup_n X A;
LF exh : lctx _ - type =

| exh/n : exh nil

| exh/c : exh A - hal o« » exh (cons A _ _ a);

The underscores _ above indicate holes that may be inferred
by Beluga’s type reconstruction.

Well-formedness. Our implementation of CARVe cannot
enforce well-formedness at the LF level where we specify
typing rules, since variables are maintained at the meta-
level. While HOAS directly enforces the freshness of new
variables, this is not “known” at the meta-level. We eschew
non-declarative solutions such as in [15] and encode well-
formedness as a meta-level predicate on contexts. Specifi-
cally, we define a computation-level inductive type Wf in-
dexed by a typing context [¥ + A] as a contextual object [38].
(Here V¥ is the ambient LF context for variable names and A
is the explicit typing context.)

false : type.

inductive Wf : (¥:ctx) {A:[¥ + lctx N]} ctype =

| Wf/n @ WF [¥ + nil]

| Wf/c : WF [¥ + ATl - ([¥ + lookup_n #p A] - [+ falsel)

- WF [¥ + cons A #p A al;

Split Decisions: Explicit Contexts for Substructural Languages

The parentheses around the parameter ¥:ctx indicate that it
is treated implicitly. The constructor wf/n defines the well-
formedness of the empty context under any LF context. The
second constructor wf/c specifies the inductive case where
we can extend A with x only if x is a parameter variable
(enforced by the tag #) and is not in the context’s domain.
We do so with a function that produces from an object of
type [¥ + x € A] an object of the uninhabited type [I false],
representing a contradiction.

Properties. Let us consider the commutativity of merge
as an example of how properties about CARVe context op-
erations may be represented in Beluga. The proof is imple-
mented as a total recursive function.

rec merge_comm :
(P:ctx) [V + merge A; A, A1 - [V + merge A, Ay A] =

The above type signature states that, given a proof of A; >
A, = A under the LF context ¥, we may obtain a proof of
A; > Ay = A. The property is easily proved by pattern
matching:

fn mg = % introduce object of type [¥ F merge A; Ay A]

case mg of % pattern match on mg

| [¥ + mg/n] = [¥ + mg/n] % nil case

| [¥ F mg/c M1 T1] = % cons case
let [¥ + M2] = merge_comm [¥ + M1] in % invoke IH
let [¥ + T2] = mult_comm [¥ + T1] in % lemma
[¥ + mg/c M2 T21;

where the commutativity of e

rec mult_comm : [+ e oy az al - [F e ay a7 al = ... ;

is used as a lemma in the induction step.

4.2 Case Studies

We have used CARVe to mechanize and prove meta-theoreti-
cal properties about a variety of formal systems: the linear
sequent calculus, the bidirectional linear natural deduction
calculus, the session-typed process calculus CP, the linear
and the affine A-calculus. For space considerations, we will
narrow our focus on the first three systems, while briefly
touching on some distinguishing features of the others.

Linear Natural Deduction and Sequent Calculi. Let
us restrict our attention to the implicational fragments of
these systems introduced in section 3. To represent terms
from the linear natural deduction calculus, we reuse the type
obj, making use of HOAS to encode A-terms.

LF obj : type = LF tp : type =
| coerce : obj - tp — obj | base : tp
| lam : (obj - obj) — obj | -0 : tp - tp - tp;

| app : obj - obj - obj; --infix -o 5 right.

We represent the typing judgments A - e = Aand A - e &
A using mutually-recursive data-types

LF syn :
| coe :

lctx _ - obj - tp - type =
chk A e A > syn A (coerce e A) A

263

CPP ’25, January 20-21, 2025, Denver, CO, USA

| init : upd A _ X XAATOA" - exh A" - syn A X A
| Eco : syn Ay s (A -0oB) - chk Ay e A
- merge Ay Ay A - syn A (app s e) B

and LF chk : lctx _ - obj — tp —» type =

| conv : syn A e A- chk AeA

| I-o : ({x:0bj} chk (cons A x A 1) (e x) B)
- chk A (1am e) (A -0 B);

and the sequent calculus typing judgment A I A by:

LF seq : lctx _ — tp — type =
| var : upd A _ X XAATOA" - exh A" > seq A A
| cut : merge Ay A, A

- seq Ay A - ({x:obj} seq (cons A, x A 1) C)

- seq A C

R-0 : ({x:obj} seq (cons A x A 1) B) - seq A (A -0 B)
L-o : upd A _ XX (A-0B) (A-0B) 10A"'

- merge Ay Ay A'

- seq A; A » ({x:0bj} seq (cons A, x B 1) C)

- seq A C;

We encode simultaneous substitutions o as lists of terms:

LF subst : nat —» type =
| empty : subst zero
| scons : subst N - obj - subst (suc N);

Next, the well-typed substitution judgment A I o : I' pro-
vides a mapping from o to each variable in I'.

LF wf_subst : lctx _ - subst N - lctx N - type =
wf_subst_empty : exh A - wf_subst A empty nil
wf_subst_cons1 : wf_subst A; o T

- chk A, e T » merge A; Ay A

- wf_subst A (scons o e) (consT _ T 1)
wf_subst_cons@ : wf_subst A o T

- chk A' e T - same_elts A A'

- wf_subst A (scons o €) (cons T _ T 0);

The assumption same_elts A A' corresponds to the premise
0A = 0A’ in the on-paper definition.

As Beluga does not support existential quantification di-
rectly, we encode the existence of a term e such that A I+
e & C with the type inhabit.

LF inhabit : lctx _ —» tp - type =
| inh : chk A _ C - inhabit A C;

We are now ready to present the forward direction of the
equivalence proof. Figure 1 includes the two cases presented
in subsection 3.1, where the code is annotated with the cor-
responding line numbers from the earlier on-paper proof.
The proofs are identical to that presentation, with two ex-
ceptions, marked with an asterisk: the substitution judgment
must at one point be unboxed, and we must invoke a “prun-
ing” lemma to strengthen the LF context. Signatures of all
lemmas used may be found in Appendix A.

The artifact contains the proof of the other direction as
well as a proof of cut elimination for the linear sequent
calculus.

CPP ’25, January 20-21, 2025, Denver, CO, USA

rec seq2nd : (¥:ctx) [V + seq I C] » [¥ + wf_subst A o T']
- [¥ + inhabit A C] =
fn d, s = case d of
% (hyp) case

| [¥ + var U E1] = % a
let [¥ + S] = s in % *
let [¥ + sub-up S1 C1 M1 _ _] =

subst_upd [¥ + ST [¥ + U] in % b
let E2 = subst_exh [¥ + S1] [¥ + E1] in % c
let [¥ + cx/refl] = merge_id [¥ + M1] E2 in % d
[¥ + inh C1] % e

% (-0 L) case
| [¥ + L-o U M1 D1 \x.D2] = %
let [¥ + ST = s in % *
let [¥ + sub-up ST D1 M2 _ _] =
subst_upd [¥ + S] [¥ + U] in % b
let [¥ + sub-mg S2 S3 M3 _ _] =
subst_merge [¥ + S1]1 [¥ + M1] in % c
let [¥ + M3'] = merge_comm [¥ + M3] in %
let [¥ + mg-assoc M4' M5 _ _] =
merge_assoc [¥ + M2] [¥ + M3'] in %
let [¥ +
let [V +
let [¥ +
b
E

Q

o

M4] = merge_comm [¥ + M4'] in %
inh D2] = seg2nd [¥ + D1] [¥ + S2] in %
D3] = [¥ + E-o (coe D1) D2 M4] in %
let [¥ + D3'] = [¥ + conv D3] in %
let [V + S4]1 = [¥ + wf_subst_cons1 S3 D3' M5] in %
let [_,x:0bj + inh D4'] =

seg2nd [¥,x:obj + D2] [¥,x:0bj + S4[
let Prune-Chk [¥ + D4] [¥,x:obj + _] =

prune_chk [¥,x:obj + D4'] in % *
[¥ + inh D4]

> m Hh ®© o o

..11 in

.

Figure 1. Code fragment of one direction of the equivalence
proof

CP. Another system encoded using CARVe is the multipl-
icative-additive fragment of the session-typed process cal-
culus CP [54]. CP’s process language is a variant of the
n-calculus, and its type system is obtained directly from clas-
sical linear logic [26]. In session-typed systems, variables in
typing contexts represent names of channels, communication
over which is prescribed by their session types: we interpret
the typing judgment P + x; : Ay,...,x, : A, as stating
“process P uses each channel x; exactly once according to
protocol A;”

For instance, the two structural rules in classical linear
logic—identity and cut—correspond to message forwarding
and parallel composition, respectively. The process x < y
links two dual channels, under the condition that all other
channels have already been used. The process vx : A.(P || Q)
spawns a fresh channel with dual endpoints along which
processes P and Q can communicate.

exh(Aly P At >y P At][x 1 A x 0 A))
xeoykA (

hyp)

264

Daniel Zackon, Chuta Sano, Alberto Momigliano, and Brigitte Pientka

PI—Al,x:A QFAQ,X!AL
v AP Q) F A

A1><A2=A

(cut)

In the forwarding rule, the choice to consume y before x
is arbitrary; by confluence (Proposition 2.3), we could well
have done the reverse.

The internal choice processes x[inl]; P and x[inr]; P send
a binary choice label along x and continue as P. Dually, the
external choice process x.case(P, Q) offers a binary choice
on x and continues as either P or Q, depending on the choice
received.

PrA[x'A®B—x"A®B],x" : A
x[inl]; P+ A

(®1)

PrAlx:'AeB—x"A®B],x":B
x[inr]; P+ A

(®2)

OrA[x:'A&B+— x:" A&B],x': B
PrA[x ' A&Br x*A&B],x": A
x.case(P, Q) + A

In encoding the typing rules above using CARVe, we have
adopted the continuation-passing principle [17]. That is, each
channel is treated as a single-use entity carrying exactly
one message: when communication occurs, the channel is
closed and a fresh continuation channel is created and bound
to the continuation process. This style has the benefit of
making dependencies explicit, and is in keeping with our
philosophy of varying multiplicities while keeping contexts
intact. It also makes our encoding adequate with respect to
Structural CP (SCP) [47], which requires continuations. We
note, however, that we can encode CP in CARVe using the
standard approach of re-using channels’ names.

In LF, the binding of continuation channels are repre-
sented using HOAS:

LF obj :
| fwd :

type =

obj — obj - obj

| pcomp : tp - (obj - obj) - (obj — obj) - obj
| inl : obj —» (obj — obj) - obj
|

inr : obj —» (obj — obj) - obj e

We then encode the CP typing judgment in LF as the type
family oft:

LF oft : obj —» lctx _ - type =

| oft/fwd : dual A A" - upd A _YY A" A" T 0 A"’
>upd A' _XXAATOA"' - exh A"’

- oft (fwd X Y) A

| oft/pcomp : dual A A' - merge A; Ay A
- ({x:0bj} oft (P x) (cons A; x A 1))
- ({x:0bj} oft (Q x) (cons Az x A' 1))
- oft (pcomp A P Q) A

| oft/inl : upd A _ X X (A ®@B) (A®B) 10A'
- ({x:0bj} oft (P x) (cons A' x A 1))

Split Decisions: Explicit Contexts for Substructural Languages

- oft (inl X P) A

| oft/inr : upd A _ X X (A ®@B) (A®B) 10A'
- ({x:0bj} oft (P x) (cons A' x B 1))
- oft (inr X P) A

| oft/choice : upd A _ X X (A &B) (A&B) 10 A"
- ({x:0bj} oft (P x) (cons A' x A 1))
- ({x:0bj} oft (Q x) (cons A' x B 1))
- oft (choice X P Q) A e

We mechanize two main results about CP. The first is type
preservation, whose proof relies on a renaming lemma and
makes heavy use of the algebraic properties of update and
merge. The second is the equivalence of CP with SCP. SCP
is an alternative type structure for CP processes that locally
enforces linearity with a logical predicate. In short, in SCP
the typing rule for any process P that binds a linear variable
x includes a condition that it is used linearly, encoded as a
predicate linear : (obj - proc) - type. The typing judgment
is therefore encoded as a judgment on a process wtp : proc -

type, while the typing of channel names uses a hypothetical
judgment of type hyp : obj - tp - type kept in an ambient
LF context ¢ following the schema

schema hctx = block ch:obj, h:hyp ch _;

We encode a bijective translation between the typing judg-
ments of CP and SCP. To give this bijection, we need only
consider typing and linearity (processes and types use the
same syntax). To translate from CP to SCP, we define a rela-
tion Enc [¥ + Al $[® + $o] that translates a linear context A
under ¥ into an intuitionistic context ® and builds a weak-
ening substitution ¢ mapping names in ¥ to ones in ®. In
the reverse direction, we must inspect the typing derivation
of a process P to determine which channels are used lin-
early. We then use this information to assign multiplicities
to variables in explicit contexts. The ternary relation bec
[¥ + PI [¥ r A] $[® + $o]relates A and @, where the choice
of multiplicities in A depends on P, and builds a weakening
substitution mapping variables in ¥ to ones in ®. We en-
code both context relations in Beluga as inductive datatypes,
following [20]. For instance, the translation from linear to
intuitionistic contexts is defined by

inductive Enc : (¥:ctx) (®:hctx)
{A:[¥ + lctx N1} {$0:$[® + ¥]} ctype =

| Enc/n : Enc [+ nil] $[+ 7]

| Enc/c : Enc [¥ r A] $[D + $01]
- Enc [¥,ch:obj + cons A[..] ch A[] _]
$[P,b:block ch:obj,h:hyp ch A[] + $o[..],b.chl;

The ~ above denotes the empty substitution, and the weaken-
ing substitution [] specifies that the metavariable A is closed.
The dollar signs $ indicates that ¢ is a substitution variable
of the specified substitution meta-type.

The fundamental lemma that makes this translation possi-
ble extracts a linearity judgment from a CP typing judgment.

CPP ’25, January 20-21, 2025, Denver, CO, USA

rec oft_linear : (¥:ctx) [¥,x:0bj + oft P (cons A x A 1)]
- [¥ + linear \x.P] = ... ;

We then prove the equivalence of the two systems via the
defined relations.

rec cp2scp : Enc [¥ + A] $[P + $0]
- [P Foft PA]l - [® + wtp P[$01] = ... ;

rec scp2cp : Dec [¥ + P] [¥ + A] $[P + $0]
- [® + wtp P[$0]] - [¥ F oft P ATl = ... ;

The first proof is by structural induction on the typing judg-
ment, and the second on the encoding relation. This result
serves as a formalized proof the “internal” adequacy of SCP
with respect to a first-order encoding of CP. To our knowl-
edge, this is the first mechanized adequacy proof'in a session-
typed setting.

Linear A-Calculus. We mechanize the linear A-calculus
using CARVe in two styles: the first uses HOAS, and the sec-
ond de Bruijn levels with an environment-based operational
semantics. We prove type preservation in both settings. In
the former encoding, we include exponentials by adjusting
the underlying resource algebra per section 5, but omit them
from the de Bruijn formulation for simplicity.

As the first approach is relatively standard, let us focus
on the second formulation, which yields a compact type
preservation proof without the need for a substitution lemma.
In this setting, environments 75 are represented as lists of
closures (pairs of environments and terms):

LF obj : type =

| var : nat - obj

| app : obj - obj - obj
| abs : obj — obj;

LF venv : nat - type =

| empty : venv zero

| vcons : venv N - val - venv (suc N)
and LF val : type =

| closure : venv _ - obj - val;

A relation of type hasty_env :
ciates an environment with a linear typing context of the
same length, representing a simultaneous substitution and
yielding value typing judgments hasty :

Next, we encode environment evaluation (“under environ-
ment 7, term M evaluates to value w”):

venv N - lctx N - type asso-

val - tp - type.

LF eval : venv _

- obj - val - type =

| eval/var : lookup_venv n W n - eval n (var n) W
| eval/abs : eval n (abs M) (closure n (abs M))
| eval/app : eval 5 M (closure n' (abs M'))

- eval n N W' - eval (vcons p' W') M'" W
- eval n (app M N) W;

Note in particular that evaluating a variable n returns the
value that appears at level n in the environment, and evalu-
ating a function returns its closure.

CPP ’25, January 20-21, 2025, Denver, CO, USA

Finally, we encode term typing judgments using CARVe
constructs.

LF oft : lctx _ - obj —» tp - type =

| oft/var : upd An _ _AATO0A" - exh A'
- oft A (var n) A

| oft/abs : oft (cons A _ A1) MB
- oft A (abs M) (arrow A B)

| oft/app : oft Ay M (arrow A B) —» oft Ay N A
- merge A; Ay A - oft A (app M N) B;

The proof of type preservation

rec tps : [+ eval y M W] - [+ hasty_env 5 Al
- [Foft AMT] > [+ hasty WT] = ... ;

is by structural induction on the evaluation judgment. Two
main lemmas are used: one stating that the environment’s
domain is preserved under merge, and another about the
correspondence between the context relation, context look-
up, and value typing.

Affine A-Calculus. Affine systems are characterized by
forbidding contraction while allowing weakening. We cap-
ture them by the same monoid £, provided that we modify
the conditions at the leaves of a proof tree. Accordingly, the
affine variable rule becomes

x1AeA
ArA

where we simply check that x occurs linearly.

The encoding of this system otherwise uses the same syn-
tax and semantics as the linear case using HOAS, with expo-
nentials omitted for simplicity. We again prove type preser-
vation for this system. To prove the variable case of the
substitution property, an additional lemma is needed stating
that typing is preserved under merges.

4.3 Lemma Usage

In Table 1, we summarize some quantitative metrics concern-
ing the usage of lemma in mechanizing the main theorem for
each encoded system. The results are identified by their name
in the code base (e.g., “tps” instead of “type preservation”).
We note the number of lines of the proof term for each result
(under the heading “Theorem”), and analogously the number
of lines devoted to proving lemmas (“Lemmas”) or proper-
ties from the reusable common infrastructure (“Common”)
that—either directly or transitively—support the final proof.
The reader will note a significant utilization of the common
infrastructure, with the percentage of shared CARVe lemmas
ranging between 42.6% and 77.6% of the overall code base
for each development.

5 Varying the Algebra

So far, we have considered only one resource algebra. How-
ever, CARVe can be readily adapted to other scenarios by
parameterizing contexts by other algebraic structures of in-
terest. The structures described in this section have been

266

Daniel Zackon, Chuta Sano, Alberto Momigliano, and Brigitte Pientka

implemented in Beluga with their algebraic properties. With
few exceptions (isolated from the rest in the artifact), all
proven lemmas about context operations hold regardless of
the specific choice of structure.

Intuitionistic Assumptions. The trivial monoid

I = ({0} {((w, 0), 0)}, 0),

characterizes allocation for fully intuitionistic contexts and
amounts to having no annotations at all. Here v denotes a
variable always available.

To model intuitionistic resources alongside linear or affine
ones, we may simply enrich £ with o as a third element:

o [0 1 w
0j/0 1 -
111 - -
|- - o

In regard to exhaustedness, we consider as harmless those
elements of multiplicity either 0 or w. While the structure is
only a commutative semigroup, these harmless elements are
partial units for 0 and 1 and for w, respectively.

Parametrizing contexts by this structure allows one to
encode exponential modalities in the style of dual intuition-
istic linear logic [3] while making use of only one typing
context. For example, in such a setting, the variable rule has
two distinct forms:

Alx ' A x:"Al =A" exh(A)
AlrA (hyp1)
x:®AeA exh(A) N
AT A (hypw)

Remark that the semigroup can be extended to a monoid
by defining « e w = w @ @ = 1 ® 1 = for any «a. This is the
none-one-tons semiring of McBride [37] under addition.

Strict Assumptions. Strict (also called relevant or rele-
vance) systems allow contraction and forbid weakening. In
practice, strict assumptions must be used at least once in
a derivation. We model such systems by reinterpreting £
as the monoid ({1, w}, e,), with e given by the following
table:

e |1 w
1 |- 1
w|1l

In contrast with linear or affine systems, we also require
both (hyp;) and (hyp,,) variable rules as in the joint linear-
intuitionistic case.

The multiplicity 1 is used to denote a strict assumption.
When used, its tag is changed not to 0 (unavailable) but to
o (available now unrestrictedly.) When a context is split, a
strict assumption must still be used at least once in one of the
branches but becomes available unrestrictedly in the other.
A context is considered exhausted when only unrestricted
assumptions remain.

Split Decisions: Explicit Contexts for Substructural Languages

CPP ’25, January 20-21, 2025, Denver, CO, USA

Table 1. Summary of lemma usage in implementation

‘ System Result H Theorem ‘ Lemmas ‘ Common ‘
Affine A-calculus (affine_lam) tps 22(39%) | 105 (18.5 %) | 441 (77.6 %)
Linear A-calculus with HOAS (1in_lam) tps 45 (5.8 %) 208 (27 %) | 519 (67.2 %)
Linear A-calculus with de Bruijn (closures) tps 16 (15 %) 36 (35 %) 51 (50 %)
CP (cp) tps 170 (14.5 %) | 504 (42.9 %) | 500 (42.6 %)

cp2scp 53 (6.8 %) | 293 (37.8 %) | 429 (55.4 %)
scp2cp 59 (17.4 %) | 113 (33.2 %) | 168 (49.4 %)
Linear sequent calculus (seq) cut_elim 266 (24.4 %) | 335 (30.7 %) | 489 (44.9 %)
Linear sequent / natural deduction calculi (seq/ nd) | seq2nd 75 (7.4 %) | 447 (44.4 %) | 485 (48.2 %)
chk2seq / syn2seq 64 (10.8 %) | 116 (19.5 %) | 414 (69.7 %)

Graded Assumptions. The numerical monoid

G =(NAxy).2) : x+y=2}0)

characterizes allocation for graded contexts in the spirit of
Orchard et al. [39]. Gradedness is a generalization of linearity:
an assumption of multiplicity n must be used precisely n
times. We thus consider as harmless—as in the linear case—
assumptions of multiplicity 0.

6 Related Work
6.1 Explicit Contexts and HOAS

Crary [15] introduced the idea of mixing hypothetical and
categorical judgments in a HOAS setting, where HOAS is
reserved for syntax while typing contexts are treated as ex-
plicit objects in judgments such as typing rules. He also
showed a translation between explicit (intuitionistic) con-
texts and implicit ones. This idea had been heavily used in
the Twelf formalization of SML [34]. A similar approach un-
derlines the implementation of the two-level approach (see
for example [19]).

6.2 Resource Algebras

The idea of generalizing the linear discipline into an algebraic
structure owes itself to two threads.

Bounded Linear Logic. In the early 1990s, Girard intro-
duced bounded linear logic (BLL) [25], where a family of
modalities !, A indicates that A may be reused up to x times.
The resource polynomials of BLL were generalized using
semirings in several works including [24], where ring addi-
tion controls contraction and multiplication bounds function
usage. This allows one to track various properties—such as
bounded reuse and strictness—within a single system. This
approach was further generalized as graded modal logic in
the design of the typed functional language Granule [39].
These ideas have not been widely adopted in the mechanized
meta-theory community. Semiring annotations are present
in quantitative type theory [2], but for a different purpose,
namely to combine linear and dependent types. At the same
time, researchers have mechanized some of the meta-theory

267

of those type theories, (e.g., [13]), thus endorsing a context
management style similar to ours.

Separation Algebras. The heap semantics of the logic of
bunched implications [44] was first abstracted into a partial
commutative cancellative monoid by Calcagno et al. [6]. This
was further refined by Dockins et al. [18] in view of their Coq
implementation in the VST project; they embrace partiality
by switching to a relational presentation of the monoidal
operation and add axioms to exclude degenerate algebras
while relaxing the unit conditions. Other slightly different
axiomatizations are considered in [42] and [32].

6.3 Let’s Split

When addressing the challenge multiplicative rules present
to encoding contexts, the prevailing approach in mechanized
meta-theory within mainstream proof assistants has been to
physically partition the context, seen as a list or a finite map.
Limiting ourselves to the meta-theory of the 7-calculus, this
approach has been used in [22, 27] and even extended to the
intrinsically-typed approach [14, 46, 52].

Alternatively, binding contexts may be seen as dictionar-
ies, i.e., finite maps that can be split since they are known to
have disjoint domains (either by a-renaming or by explicit
conditions). The inspiration is again the heap model of sep-
aration logic. One example is the Coq library by Castro et
al. [9], where splitting makes the context undefined when
it would result in duplicated entries. The library is based
on the formalization of finite maps in MathComp. Another
is the pedagogical implementation of separation logic for
the SF curriculum [11], where a finite map is a dependent
packaging of a partial function with a proof of finiteness of
its domain. Both libraries encompass an extensive collection
of low-level lemmas and tactics, in both cases around 100
lemmas and 100 lines of Ltac code,

Another domain where splitting has been the dominant
paradigm is the meta-theory of linear sequent calculi, namely
cut-elimination and focusing. In contrast with binding con-
texts, contexts are here truly multisets, whose structure is
generally imposed over the context seen as a list. The idea

https://github.com/dzackon/carve/blob/main/case_studies/aff_lam/thms.bel#L7-L28
https://github.com/dzackon/carve/blob/main/case_studies/lin_lam/thms.bel#L7-L51
https://github.com/dzackon/carve/blob/main/case_studies/closures/thms.bel#L7-L22
https://github.com/dzackon/carve/blob/main/case_studies/cp/thms.bel#L7-L176
https://github.com/dzackon/carve/blob/main/case_studies/cp/thms.bel#L180-L232
https://github.com/dzackon/carve/blob/main/case_studies/cp/thms.bel#L234-L292
https://github.com/dzackon/carve/blob/main/case_studies/seq-nd/thms.bel#L236-L273
https://github.com/dzackon/carve/blob/main/case_studies/seq-nd/thms.bel#L283-L357
https://github.com/dzackon/carve/blob/main/case_studies/seq-nd/thms.bel#L359-L394
https://github.com/dzackon/carve/blob/main/case_studies/seq-nd/thms.bel#L396-L422

CPP ’25, January 20-21, 2025, Denver, CO, USA

Daniel Zackon, Chuta Sano, Alberto Momigliano, and Brigitte Pientka

Table 2. Summary of approaches to substructural context modeling

‘ Paper ‘ Application ‘ Result ‘ System ‘ Syntax ‘ Contexts
[1] MA linear A-calculus type preservation (TPS) Agda scoped de Bruijn (DB) leftover typing
[50] explicit substitutions TPS / confluence Twelf HOAS tags
[13] graded dependent type theory TPS w.r.t. heap semantics | Coq locally nameless tags
[60] m-calculus TPS for capabilities types | Agda scoped DB leftover typing
[22] m-calculus TPS for linear type system | Isabelle/ HOL | DB ala Gordon list split
[27] polymorphic -calculus TPS for session types Coq locally nameless finite maps
[52] functional session-typed calculus | TPS / session fidelity Agda intrinsically-typed DB list split
[14] m-calculus with dependent pairs | TPS by construction Agda intrinsically-typed DB list split
[46] m-calculus TPS for session types Agda intrinsically-typed co-DB | split via bunched logic
[9] m-calculus TPS for session types Coq locally nameless finite maps
[47] m-calculus TPS for session types Beluga HOAS linearity predicate
[58] sequents cut elimination / focusing | Coq parametric HOAS lists with bag equivalence
[21,33] | sequents cut elimination / focusing | Coq Hybrid list with permutations
[12] sequents cut elimination Abella HOAS multiset over lists
[28] linear A-calculus type uniqueness Abella HOAS multiset over lists

is then to see a context split as list concatenation modulo
exchange. This is realized in different ways: Xavier et al. [58]
use bag equivalence implemented as equal number of occur-
rences. Other authors rely on permutations, either assuming
a structural rule of exchange [21, 33] or localizing permuta-
tions in multiplicative rules (e.g., [7]). Chaudhuri et al. [12]
instead encode multisets via a non-deterministic “cons” op-
eration, by means of which merging and permutation of
contexts are defined. The former is used as expected in mul-
tiplicative rules and the latter in additive ones. A library of
some 80 lemmas about those predicates is provided. Other
combinations have also been investigated [28].

6.4 Let’s Stay Together

Keeping the context intact has been explored in various
flavours.

Tags. The use of type qualifiers, which are first-class tags
occurring in the syntax of types and terms encoding intro-
duction rules, was pioneered by Walker [55] and adapted by
Vascocelos [53] to the concurrent setting. As previously men-
tioned, our approach to meta-theory is built on the ideas of
Schack-Nielsen and Schiirmann [50], which were formulated
to provide an efficient realization of the explicit substitution
calculus underlying Celf’s [49] operational semantics.

Wood and Atkey [56] annotate variables with values from
a skew semiring denoting those variables’ usage by terms.
This also permits them to keep the context intact by sim-
ply updating the status of the variable. Their work extends
McBride’s kits and traversals technique to the quantitative /
linear setting. This allows one to isolate properties required
to form binding-respecting traversals of simply typed A-
terms, so that renaming and substitution arise as specific
instantiations. In that setting, usage annotations on contexts
are vectors, usage-preserving maps of contexts are matrices,
and the linearity properties of the maps induced by matrices
are exactly the lemmas needed for showing that traversals

(and hence renaming, sub-usaging, and substitution) pre-
serve typing and usages. It remains open how this technique
can be applied to process calculi such as CP, or for proving
meta-theory more generally.

Linearity Predicates. Crary [16], building on previously
unpublished work by Pfenning, introduced the idea of sepa-
rating a typing derivation from the check that it satisfies a
given property, namely of being linear. While this fits well
with existing non-substructural proof assistants and applies
to different settings [47], it seems hard to generalize to more
exotic substructural systems.

Leftovers. This is based on the idea that a linear term
consumes some of the resources available in its context, while
leaving behind leftovers which can then be fed to another
program. Though the idea originated within linear functional
and logic programming [30, 35], Allais [1] was the first to
employ the idea for proving (in Agda) subject reduction
for the linear A-calculus. This was later extended to the 7-
calculus (with respect to capabilities types) by Zalakain and
Dardha [60]. The Agda development is parameterized over a
usage algebra following the definition of Dockins et al. [18]. It
would be interesting to draw a quantitative comparison with
our approach, although, as usual, the de Bruijn encoding in
the cited papers tends to overwhelm the development. Note
however that CARVe can be easily used to implement the
leftover style, by appropriate updating of the linear tag; in
fact, Allais uses annotations similar to ours.

The different approaches covered in subsection 6.3 and
subsection 6.4 are summarized in Table 2.

6.5 Substructural Frameworks

A rather different approach is to let the logical framework
where we encode our system under study be substructural.
Examples include LLF [10], based on linear hereditary Har-
rop formulee, Lincx [23] for a linearization of contextual LF,

268

Split Decisions: Explicit Contexts for Substructural Languages

HLF [45] for supporting hybrid LF, and Celf [49] for imple-
menting Concurrent LF.

In all these systems, using HOAS and hypothetical judg-
ments, resource contexts are implicit, bypassing (for the user)
all the issues connected to resource management. This leads
to elegant encoding of object logics such as linear sequent
calculi, MiniML with references, security protocols, the 7-
calculus, and session types. However, none of these frame-
works, bar Celf, have been implemented and—even in Celf’s
case—there is little support for verifying the meta-theory of
the encoded systems.

7 Conclusion

In this work, we have presented CARVe, a flexible infrastruc-
ture for managing substructural contexts explicitly, which
is fully implemented in the proof assistant Beluga. We have
showcased the infrastructure’s versatility by using it to mech-
anize a broad range of substructural systems and correspond-
ing proofs. We anticipate that our development will prove
useful for formalizing other substructural languages not con-
sidered in this paper.

Future Work. While monoids suffice for our study, the
modularity of our approach should lend itself well to en-
coding systems using more intricate multiplicity structures.
Specifically, while our study considered only substructural
systems that control strengthening and weakening, model-
ing ordered type systems based on non-commutative logic
(which restrict exchange) will require a richer resource alge-
bra. In the future, we also intend to extend CARVe to model
subexponential and adjoint modalities.

A further quantitative comparison of CARVe with alter-
native approaches would also offer insights into the relative
strengths and limitations of our infrastructure.

Finally, it would be worthwhile to implement CARVe in
a mainstream proof assistant to better leverage structuring
mechanisms such as polymorphism, module systems, and
type classes. This would allow us to go beyond the current
limitations of Beluga and directly realize a library for binding
contexts where arbitrary keys carry arbitrary payloads given
some resource algebra. Additionally, integrating code gener-
ation into the implementation could facilitate the application
of CARVe to new systems.

8 Data Availability Statement

An artifact accompanying this paper is available online [59].

Acknowledgments

The authors thank Ryan Kavanagh for discussions that con-
tributed to the development of this work, and the anonymous
reviewers for their constructive and insightful feedback.

This work was funded by the Natural Sciences and En-
gineering Research Council of Canada and the Fonds de
recherche du Québec — Nature et technologies.

269

CPP ’25, January 20-21, 2025, Denver, CO, USA

A Further Signatures

For reference, we include below the LF signatures of all
constructs and lemmas left undefined in subsection 4.2 (sim-
plified for readability).

Identity property of merge:

lctx N - lctx N - type =
cx_eq A A;

LF cx_eq :
| cx/refl :

rec merge_id : (¥:ctx) [¥ + merge A; Ay A]
- [V + exh Ayl - [¥ + cx_eq A, AT = ... ;

Associativity of merge:

LF mg_assoc : merge _
| mg-assoc : merge A; Az A3 — merge Ay Ayz A
- {M1:merge A2 A3 A} {M2:merge A; Ay A2}

mg_assoc M1 M2;

_ _ - merge _ _ _ — type =

rec merge_assoc : (¥:ctx)
{M1:[¥ + merge Az A3 Al} {M2:[¥ + merge A; Ay A21}
[¥ + mg_assoc M1 M2] = ... ;

Lemma 3.1 (1):

rec subst_exh : (¥:ctx) [¥ + wf_subst A o T']
> [P +exhT] - [¥Y+exh Al = ... ;

Lemma 3.1 (2):

LF subst-merge : wf_subst _ _ _ - merge _ _ _ — type =
| sub-mg : wf_subst A; o I1 » wf_subst A, o0 I}

- merge Ay Ay A

- {S:wf_subst A o T} {M:merge Iy I, T}

subst-merge S M;

rec subst_merge : (¥:ctx) {S:[¥ r wf_subst A o I']}
{M:[¥ + merge Iy I, T]} [¥ + subst-merge S M] = ... ;

Lemma 3.1 (3):

LF subst-upd :
wf_subst _ _ _ - upd _ _ _ _ _ _ _ _ _

wf_subst Ay o T' - chk Ay _ A

- merge Ay Ay A

- {S:wf_subst A 0 T} {U:upd T' _ _

subst-upd S U;

| sub-up :

_AATOT'}

rec subst_upd : (¥:ctx) {S:[¥ + wf_subst A o I']}
{UI¥ rupd T _ _ _AATOT']}
[¥ + subst-upd S U] = ... ;

Pruning lemma:

inductive PruneChk : (¥:ctx)
{CH:[¥,x:0bj + chk A[..] M C[]]} ctype =
| Prune-Chk : [¥ + chk A M C[]]
- {CH:[¥,x:0bj + chk A[..] M[..] C[11}
PruneChk [¥,x:obj + CHI;

rec prune_chk : {CH:[¥,x:obj + chk A[..] M C[1]}
PruneChk [¥,x:obj + CH] = ... ;

CPP ’25, January 20-21, 2025, Denver, CO, USA

References

(1]

(2]

(3]

(4]

[10]

[11]
[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

Guillaume Allais. 2017. Typing with leftovers: A mechanization of
intuitionistic multiplicative-additive linear logic. In Proc. TYPES 2017
(LIPIcs, Vol. 104), Andreas Abel, Fredrik Nordvall Forsberg, and Ambrus
Kaposi (Eds.). 1:1-1:22. https://doi.org/10.4230/LIPICS.TYPES.2017.1
Robert Atkey. 2018. Syntax and semantics of quantitative type theory.
In Proc. LICS ’18. 56—-65. https://doi.org/10.1145/3209108.3209189
Andrew Barber. 1996. Dual intuitionistic linear logic. Technical report
ECS-LFCS-96-347. University of Edinburgh. https://www.Ifcs.inf.ed.
ac.uk/reports/96/ECS-LFCS-96-347

Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon
Peyton Jones, and Arnaud Spiwack. 2017. Linear Haskell: Practical
linearity in a higher-order polymorphic language. Proc. ACM Program.
Lang. 2, POPL (Dec. 2017), 5:1-5:29. https://doi.org/10.1145/3158093
Luis Caires and Frank Pfenning. 2010. Session types as intuitionistic
linear propositions. In Proc. CONCUR 10 (Lect. Notes Comput. Sci.,
Vol. 6269), Paul Gastin and Francois Laroussinie (Eds.). Springer, 222
236. https://doi.org/10.1007/978-3-642-15375-4_16

Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. 2007.
Local action and abstract separation logic. In Proc. LICS *07. 366-378.
https://doi.org/10.1109/LICS.2007.30

Etienne Callies and Olivier Laurent. 2021. Click and coLLecT: An
interactive linear logic prover. In Proc. TLLA ’21. https://hal-lirmm.
cesd.cnrs.fr/lirmm-03271501

Marco Carbone, David Castro-Perez, Francisco Ferreira, Lorenzo Gheri,
Frederik Krogsdal Jacobsen, Alberto Momigliano, Luca Padovani, Al-
ceste Scalas, Dawit Tirore, Martin Vassor, Nobuko Yoshida, and Daniel
Zackon. 2024. The concurrent calculi formalisation benchmark. In Proc.
COORDINATION °24 (Lect. Notes Comput. Sci., Vol. 14676), llaria Castel-
lani and Francesco Tiezzi (Eds.). 149-158. https://doi.org/10.1007/978-
3-031-62697-5_9

David Castro, Francisco Ferreira, and Nobuko Yoshida. 2020. EMTST:
Engineering the meta-theory of session types. In Proc. TACAS "20 (Lect.
Notes Comput. Sci., Vol. 12079), Armin Biere and David Parker (Eds.).
278-285. https://doi.org/10.1007/978-3-030-45237-7_17

Iliano Cervesato and Frank Pfenning. 2002. A linear logical framework.
Inf. Comput. 179, 1 (2002), 19-75. https://doi.org/10.1006/INCO.2001.
2951

Arthur Charguéraud. 2024. Separation Logic Foundations. Software
Foundations, Vol. 6. Electronic textbook. Version 2.2.

Kaustuv Chaudhuri, Leonardo Lima, and Giselle Reis. 2019. Formalized
meta-theory of sequent calculi for linear logics. Theor. Comput. Sci.
781 (2019), 24-38. https://doi.org/10.1016/j.tcs.2019.02.023

Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and
Stephanie Weirich. 2021. A graded dependent type system with a
usage-aware semantics. Proc. ACM Program. Lang. 5, POPL (2021),
50:1-50:32. https://doi.org/10.1145/3434331

Luca Ciccone and Luca Padovani. 2020. A dependently typed linear
m-calculus in Agda. In Proc. PPDP °20. 1-14. https://doi.org/10.1145/
3414080.3414109

Karl Crary. 2009. Explicit contexts in LF (extended abstract). Electron.
Notes Theor. Comput. Sci. 228 (2009), 53-68. https://doi.org/10.1016/j.
entcs.2008.12.116

Karl Crary. 2010. Higher-order representation of substructural logics.
In Proc. ICFP °10. 131-142. https://doi.org/10.1145/1863543.1863565
Ornela Dardha, Elena Giachino, and Davide Sangiorgi. 2017. Session
types revisited. Inf. Comput. 256 (Oct. 2017), 253-286. https://doi.org/
10.1016/j.ic.2017.06.002

Robert Dockins, Aquinas Hobor, and Andrew W. Appel. 2009. A fresh
look at separation algebras and share accounting. In Proc. APLAS
’09 (Lect. Notes Comput. Sci., Vol. 5904), Zhenjiang Hu (Ed.). Springer,
161-177. https://doi.org/10.1007/978-3-642-10672-9_13

Amy P. Felty and Alberto Momigliano. 2012. Hybrid - A definitional
two-level approach to reasoning with higher-order abstract syntax. .

270

Daniel Zackon, Chuta Sano, Alberto Momigliano, and Brigitte Pientka

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

Autom. Reason. 48, 1 (2012), 43-105. https://doi.org/10.1007/S10817-
010-9194-X

Amy P. Felty, Alberto Momigliano, and Brigitte Pientka. 2015. The
next 700 challenge problems for reasoning with higher-order abstract
syntax representations. J. Autom. Reason. 55, 4 (2015), 307-372. https:
//doi.org/10.1007/s10817-015-9327-3

Amy P. Felty, Carlos Olarte, and Bruno Xavier. 2021. A focused linear
logical framework and its application to metatheory of object logics.
Math. Struct. Comput. Sci. 31, 3 (2021), 312-340. https://doi.org/10.
1017/50960129521000323

Simon J. Gay. 2001. A framework for the formalisation of pi calculus
type systems in Isabelle/HOL. In Proc. TPHOLs *01 (Lect. Notes Comput.
Sci., Vol. 2152), Richard J. Boulton and Paul B. Jackson (Eds.). Springer,
217-232. https://doi.org/10.1007/3-540-44755-5_16

Aina Linn Georges, Agata Murawska, Shawn Otis, and Brigitte Pientka.
2017. LINCX: A linear logical framework with first-class contexts. In
Proc. ESOP °17 (Lect. Notes Comput. Sci., Vol. 10201), Hongseok Yang
(Ed.). Springer, 530-555. https://doi.org/10.1007/978-3-662-54434-1_20
Dan R. Ghica and Alex I. Smith. 2014. Bounded linear types in a
resource semiring. In Programming Languages and Systems (Lect. Notes
Comput. Sci., Vol. 8410), Zhong Shao (Ed.). 331-350. https://doi.org/
10.1007/978-3-642-54833-8_18

Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. 1992. Bounded
linear logic: A modular approach to polynomial-time computability.
Theor. Comput. Sci. 97, 1 (1992), 1-66. https://doi.org/10.1016/0304-
3975(92)90386-T

Jean-Yves Girard. 1987. Linear logic. Theor. Comput. Sci. 50, 1 (1987),
1-102. https://doi.org/10.1016/0304-3975(87)90045-4

Matthew A. Goto, Radha Jagadeesan, Alan Jeftrey, Corin Pitcher, and
James Riely. 2016. An extensible approach to session polymorphism.
Math. Struct. Comput. Sci. 26, 3 (2016), 465-509. https://doi.org/10.
1017/50960129514000231

Terrance Gray and Gopalan Nadathur. 2024. Binding contexts as
partitionable multisets in Abella. In Proc. LFMTP °24 (Electron. Proc.
Theor. Comput. Sci., Vol. 404), Florian Rabe and Claudio Sacerdoti Coen
(Eds.). Open Publishing Association, 19-34. https://doi.org/10.4204/
EPTCS.404.2

Robert Harper, Furio Honsell, and Gordon Plotkin. 1993. A framework
for defining logics. J. ACM 40, 1 (January 1993), 143-184. https:
//doi.org/10.1145/138027.138060

Joshua S. Hodas and Dale Miller. 1994. Logic programming in a frag-
ment of intuitionistic linear logic. Inf. Comput. 110, 2 (1994), 327-365.
https://doi.org/10.1006/inco.1994.1036

Junyoung Jang, Sophia Roshal, Frank Pfenning, and Brigitte Pientka.
2024. Adjoint natural deduction. In Proc. FSCD ’24. https://doi.org/10.
4230/LIPlcs.FSCD.2024.15

Jonas Braband Jensen and Lars Birkedal. 2012. Fictional separation
logic. In Proc. ESOP °12 (Lect. Notes Comput. Sci., Vol. 7211), Helmut Seidl
(Ed.). Springer, 377-396. https://doi.org/10.1007/978-3-642-28869-2_19
Olivier Laurent. 2017. Yalla. https://github.com/olaure01/yalla/.
Daniel K. Lee, Karl Crary, and Robert Harper. 2007. Towards a
mechanized metatheory of standard ML. In Proc. POPL °07, Mar-
tin Hofmann and Matthias Felleisen (Eds.). ACM, 173-184. https:
//doi.org/10.1145/1190216.1190245

Tan Mackie. 1994. Lilac: A functional programming language based on
linear logic. J. Funct. Program. 4, 4 (1994), 395-433. https://doi.org/10.
1017/50956796800001131

Nicholas D. Matsakis and Felix S. Klock. 2014. The Rust language.
ACM SIGAda Ada Letters 34, 3 (2014), 103-104. https://doi.org/10.
1145/2692956.2663188

Conor McBride. 2016. I Got Plenty o’ Nuttin’. In A List of Successes That
Can Change the World: Essays Dedicated to Philip Wadler on the Occasion
of His 60th Birthday, Sam Lindley, Conor McBride, Phil Trinder, and
Don Sannella (Eds.). Springer, 207-233. https://doi.org/10.1007/978-3-

https://doi.org/10.4230/LIPICS.TYPES.2017.1
https://doi.org/10.1145/3209108.3209189
https://www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347
https://www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347
https://doi.org/10.1145/3158093
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1109/LICS.2007.30
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03271501
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03271501
https://doi.org/10.1007/978-3-031-62697-5_9
https://doi.org/10.1007/978-3-031-62697-5_9
https://doi.org/10.1007/978-3-030-45237-7_17
https://doi.org/10.1006/INCO.2001.2951
https://doi.org/10.1006/INCO.2001.2951
https://doi.org/10.1016/j.tcs.2019.02.023
https://doi.org/10.1145/3434331
https://doi.org/10.1145/3414080.3414109
https://doi.org/10.1145/3414080.3414109
https://doi.org/10.1016/j.entcs.2008.12.116
https://doi.org/10.1016/j.entcs.2008.12.116
https://doi.org/10.1145/1863543.1863565
https://doi.org/10.1016/j.ic.2017.06.002
https://doi.org/10.1016/j.ic.2017.06.002
https://doi.org/10.1007/978-3-642-10672-9_13
https://doi.org/10.1007/S10817-010-9194-X
https://doi.org/10.1007/S10817-010-9194-X
https://doi.org/10.1007/s10817-015-9327-3
https://doi.org/10.1007/s10817-015-9327-3
https://doi.org/10.1017/S0960129521000323
https://doi.org/10.1017/S0960129521000323
https://doi.org/10.1007/3-540-44755-5_16
https://doi.org/10.1007/978-3-662-54434-1_20
https://doi.org/10.1007/978-3-642-54833-8_18
https://doi.org/10.1007/978-3-642-54833-8_18
https://doi.org/10.1016/0304-3975(92)90386-T
https://doi.org/10.1016/0304-3975(92)90386-T
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1017/S0960129514000231
https://doi.org/10.1017/S0960129514000231
https://doi.org/10.4204/EPTCS.404.2
https://doi.org/10.4204/EPTCS.404.2
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/138027.138060
https://doi.org/10.1006/inco.1994.1036
https://doi.org/10.4230/LIPIcs.FSCD.2024.15
https://doi.org/10.4230/LIPIcs.FSCD.2024.15
https://doi.org/10.1007/978-3-642-28869-2_19
https://github.com/olaure01/yalla/
https://doi.org/10.1145/1190216.1190245
https://doi.org/10.1145/1190216.1190245
https://doi.org/10.1017/S0956796800001131
https://doi.org/10.1017/S0956796800001131
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-319-30936-1_12

Split Decisions: Explicit Contexts for Substructural Languages

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

319-30936-1_12

Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. 2008. Con-
textual modal type theory. ACM Trans. Comput. Logic 9, 3 (2008),
23:1-23:49. https://doi.org/10.1145/1352582.1352591

Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. 2019.
Quantitative program reasoning with graded modal types. Proc. ACM
Program. Lang. 3, ICFP (2019), 110:1-110:30. https://doi.org/10.1145/
3341714

Brigitte Pientka and Jana Dunfield. 2008. Programming with proofs
and explicit contexts. In Proc. PPDP °08. 163-173. https://doi.org/10.
1145/1389449.1389469

Brigitte Pientka and Jana Dunfield. 2010. Beluga: A framework for pro-
gramming and reasoning with deductive systems (system description).
In Proc. IFCAR ’10 (Lect. Notes Comput. Sci., Vol. 6173), Jurgen Giesl and
Reiner Hahnle (Eds.). Springer, 15-21. https://doi.org/10.1007/978-3-
642-14203-1_2

Francois Pottier. 2013. Syntactic soundness proof of a type-and-
capability system with hidden state. J Funct. Program. 23, 1 (2013),
38-144. https://doi.org/10.1017/50956796812000366

Klaas Pruiksma, William Chargin, Frank Pfenning, and Jason Reed.
2018. Adjoint logic. (April 2018). https://www.cs.cmu.edu/~fp/papers/
adjoint18b.pdf (unpublished manuscript).

David J. Pym, Peter W. O’Hearn, and Hongseok Yang. 2004. Possible
worlds and resources: The semantics of BL. Theor. Comput. Sci. 315, 1
(2004), 257-305. https://doi.org/10.1016/).TCS.2003.11.020

Jason Reed. 2006. Hybridizing a logical framework. In Proc.
HyLo@FLoC °06 (Electron. Notes Theor. Comput. Sci., Vol. 174), Patrick
Blackburn, Thomas Bolander, Torben Braiiner, Valeria de Paiva, and
Jorgen Villadsen (Eds.). Elsevier, 135-148. https://doi.org/10.1016/J.
ENTCS.2006.11.030

Arjen Rouvoet, Casper Bach Poulsen, Robbert Krebbers, and Eelco
Visser. 2020. Intrinsically-typed definitional interpreters for linear,
session-typed languages. In Proc. CPP °20. ACM, 284-298. https:
//doi.org/10.1145/3372885.3373818

Chuta Sano, Ryan Kavanagh, and Brigitte Pientka. 2023. Mechanizing
session-types using a structural view: Enforcing linearity without
linearity. Proc. ACM Program. Lang. 7, OOPSLA (2023), 235:374-235:399.
https://doi.org/10.1145/3622810

Anders Schack-Nielsen. 2011. Implementing Substructural Logical
Frameworks. Ph.D. Dissertation. Copenhagen, Denmark.

Anders Schack-Nielsen and Carsten Schiirmann. 2008. Celf - A logical
framework for deductive and concurrent systems (system description).

271

[50]

[51]

[52]

[53]
[54]

[55]

CPP ’25, January 20-21, 2025, Denver, CO, USA

In Proc. IJCAR 08 (Lect. Notes Comput. Sci., Vol. 5195), Alessandro
Armando, Peter Baumgartner, and Gilles Dowek (Eds.). Springer, 320-
326. https://doi.org/10.1007/978-3-540-71070-7_28

Anders Schack-Nielsen and Carsten Schiirmann. 2010. Curry-style
explicit substitutions for the linear and affine lambda calculus. In
Proc. IJCAR 10 (Lect. Notes Comput. Sci., Vol. 6173), Jirgen Giesl and
Reiner Héhnle (Eds.). Springer, 1-14. https://doi.org/10.1007/978-3-
642-14203-1_1

Peter Selinger and Benoit Valiron. 2006. A lambda calculus for quantum
computation with classical control. Math. Struct. Comput. Sci. 16, 3
(2006), 527-552. https://doi.org/10.1017/S0960129506005238

Peter Thiemann. 2019. Intrinsically-typed mechanized semantics for
session types. In Proc. PPDP ’19. 1-15. https://doi.org/10.1145/3354166.
3354184

Vasco T. Vasconcelos. 2012. Fundamentals of session types. Inf. Comput.
217 (2012), 52-70. https://doi.org/10.1016/j.ic.2012.05.002

Philip Wadler. 2012. Propositions as sessions. In Proc. ICFP ’12. 273-286.
https://doi.org/10.1145/2364527.2364568

David Walker. 2005. Substructural type systems. In Advanced Topics
in Types and Programming Languages, Benjamin C. Pierce (Ed.). MIT
Press, Chapter 1, 3-43.

[56] James Wood and Robert Atkey. 2021. A linear algebra approach to

linear metatheory. In Proc. 2nd Joint Int. Workshop on Linearity &
Trends in Linear Logic and Applications (Electron. Proc. Theor. Comput.
Sci., Vol. 353), Ugo Dal Lago and Valeria de Paiva (Eds.). 195-212.
https://doi.org/10.4204/eptcs.353.10

[57] James Wood and Robert Atkey. 2022. A framework for substructural

[58]

[59]

[60]

type systems. In Proc. ESOP "22 (Lect. Notes Comput. Sci., Vol. 13240), Ilya
Sergey (Ed.). 376-402. https://doi.org/10.1007/978-3-030-99336-8_14
Bruno Xavier, Carlos Olarte, Giselle Reis, and Vivek Nigam. 2017. Mech-
anizing focused linear logic in Coq. In Proc. LSFA °17 (Electron. Notes
Theor. Comput. Sci., Vol. 338), Sandra Alves and Renata Wasserman
(Eds.). Elsevier, 219-236. https://doi.org/10.1016/).ENTCS.2018.10.014
Daniel Zackon, Chuta Sano, Alberto Momigliano, and Brigitte Pientka.
2024. Split Decisions: Explicit Contexts for Substructural Languages
(artifact). https://doi.org/10.5281/zenodo.14271731

Uma Zalakain and Ornela Dardha. 2021. 7 with leftovers: A mech-
anisation in Agda. In Proc. FORTE 21 (Lect. Notes Comput. Sci.,
Vol. 12719), Kirstin Peters and Tim A. C. Willemse (Eds.). 157-174.
https://doi.org/10.1007/978-3-030-78089-0_9

Received 2024-09-17; accepted 2024-11-19

https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.1145/3341714
https://doi.org/10.1145/3341714
https://doi.org/10.1145/1389449.1389469
https://doi.org/10.1145/1389449.1389469
https://doi.org/10.1007/978-3-642-14203-1_2
https://doi.org/10.1007/978-3-642-14203-1_2
https://doi.org/10.1017/S0956796812000366
https://www.cs.cmu.edu/~fp/papers/adjoint18b.pdf
https://www.cs.cmu.edu/~fp/papers/adjoint18b.pdf
https://doi.org/10.1016/J.TCS.2003.11.020
https://doi.org/10.1016/J.ENTCS.2006.11.030
https://doi.org/10.1016/J.ENTCS.2006.11.030
https://doi.org/10.1145/3372885.3373818
https://doi.org/10.1145/3372885.3373818
https://doi.org/10.1145/3622810
https://doi.org/10.1007/978-3-540-71070-7_28
https://doi.org/10.1007/978-3-642-14203-1_1
https://doi.org/10.1007/978-3-642-14203-1_1
https://doi.org/10.1017/S0960129506005238
https://doi.org/10.1145/3354166.3354184
https://doi.org/10.1145/3354166.3354184
https://doi.org/10.1016/j.ic.2012.05.002
https://doi.org/10.1145/2364527.2364568
https://doi.org/10.4204/eptcs.353.10
https://doi.org/10.1007/978-3-030-99336-8_14
https://doi.org/10.1016/J.ENTCS.2018.10.014
https://doi.org/10.5281/zenodo.14271731
https://doi.org/10.1007/978-3-030-78089-0_9

	Abstract
	1 Introduction
	2 Contexts as Resource Vectors: An Infrastructure
	2.1 Resource Allocation
	2.2 Exhaustedness
	2.3 Context Search and Manipulation

	3 CARVe in Action
	3.1 Reformulating with CARVe
	3.2 Equivalence Theorem

	4 Implementation and Case Studies
	4.1 Implementing CARVe
	4.2 Case Studies
	4.3 Lemma Usage

	5 Varying the Algebra
	6 Related Work
	6.1 Explicit Contexts and HOAS
	6.2 Resource Algebras
	6.3 Let's Split
	6.4 Let's Stay Together
	6.5 Substructural Frameworks

	7 Conclusion
	8 Data Availability Statement
	Acknowledgments
	A Further Signatures
	References

